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1. INTRODUCTION 

In 1992, B.C. Dhage introduced a new class of generalized metric space called D-metric spaces. Following this, Dhage 
developed topological structures in such spaces, generalized metric spaces and presented fixed point results. In 2004, Z. Mustafa 
and B. Sims [18] demonstrated that most of the claims concerning the fundamental topological structure of D-metric space are 
incorrect. In 2006, they [19] introduced a valid generalized metric space structure called G-metric spaces.  Z. Mustafa et al. [19] 
proved some fixed point theorems for mappings satisfying various contraction conditions in G-metric spaces. Abbas et al. [3] 
proved the study of common fixed point theorems in G-metric spaces. There are various results in G-metric spaces by many 
authors [4,8,9,10,11,12,13,14,16,17,20,22,23].   

In the establishment of fixed point theorems in Partially ordered complete metric spaces with a contraction condition, Partial 
ordering relation is maintained between the points. Saadati et al. [24] proved some fixed point theorems in partially ordered             
G-metric spaces. In 2006, the notion of a coupled fixed point was introduced and studied by Guo and Lakshmikantham and 

Bhaskar. Abbas et al. [12] introduced the concepts of α and α*-compatible mappings. Abbas et al. [2] proved unique coupled 

fixed point using the concepts of α and α*-compatible mappings. Hassen Aydi et al. [5,6,7] Proved coupled coincidence and 
coupled  common  fixed point theorems for a mixed g-monotone mapping satisfying nonlinear contractions in partially ordered 
G-metric spaces. In 2012, Z. Kadelburg, Hemant Kumar Nahine and S. Radenovic [15] obtained improved version of some 
common coupled fixed point theorems for mappings in partially ordered symmetric G-metric spaces. Stojan Radenovic [21] 
used a method of reducing coupled coincidence point results in partially ordered symmetric G-metric spaces to the respective 
results for mappings with one variable. M. Aamri and D.El. Moutawakil [1] proved several common fixed point theorems for 
self-mappings satisfying a new property E.A. which generalize the notion of non-compatible maps in the setting of a symmetric 
space. The aim of this paper is to prove common coupled coincidence fixed point in partially symmetric G-metric space for 
mappings with E.A property. 

2. PRELIMINARIES 

Following are the definitions and results concerning G-metric spaces.  

Definition 2.1 

Let X be a nonempty set and let g : X × X × X → +
R  be a function satisfying the following properties: 

(G1) ( , , ) 0g x y z =  if x y z= = ; 

(G2) 0 ( , , )g x x y<  for all ,x y∈X  with x y≠ ; 

(G3) ( , , ) ( , , )g x x y g x y z≤ , for all , ,x y z∈X  with z y≠ ; 

(G4) ( , , ) ( , , ) ( , , ) ...g x y z g x z y g y z x= = = , (symmetry in all three variables); 

(G5) ( , , ) ( , , ) ( , , )g x y z g x a a g a y z≤ + , for all , , ,x y z a∈X  (rectangle inequality). 

Then the function g is called a G-metric on X and the pair (X, g) is called a G-metric space. 

Definition 2.2 

Let (X, g) be a G-metric space and let { }nx  be a sequence of points in X. 

(1) A point x∈X  is said to be the limit of a sequence { }nx  if ,lim ( , , ) 0n m n mg x x x→∞ = , and one says that the sequence 

{ }nx  is g-convergence to x. 
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(2) The sequence { }nx  is said to be a g-Cauchy sequence if, for every 0ε > , there is a positive integer N such that 

( , , )n m lg x x x ε< , for all , ,n m l N≥ ; that is, if ( , , ) 0n m lg x x x → , as , ,n m l → ∞ . 

(3) ( , )gX  is said to be g-complete (or a complete G-metric space) if every g-Cauchy sequence in ( , )gX  is a                      

g-convergent in X. 

Definition 2.3 

A G-metric space ( , )gX  is called symmetric if 

( , , ) ( , , )g x y y g y x x=  

holds for all ,x y∈X . 

The following are some examples of G-metric spaces. 

Example 2.1 

(1) Let ( , )dX  be an ordinary metric space. Define sg  by  

( , , ) ( , ) ( , ) ( , )sg x y z d x y d y z d x z= + +  

 for all , ,x y z∈X . Then it is clear that ( , )sgX  is a symmetric G-metric space. 

(2) Let { , }a b=X . Define 

( , , ) ( , , ) 0g a a a g b b b= = ,   ( , , ) 1g a a b = , ( , , ) 2g a b b = , 

 and extend g  to × ×X X X  by using the symmetry in the variables. Then it is clear that ( , )gX  is an (asymmetric)           

G-metric space. 

Remark 1 

If ( , )gX  is a G-metric space, then 

( , ) ( , , ) ( , , )gd x y g x y y g x x y= +  

define a standard metric on X . If the G-metric g is symmetric, this reduces to ( , ) 2 ( , , )gd x y g x y y= . It has to be noted that in 

some cases contraction conditions given in g-metric can be reformulated and used in this standard metric, but there are a lot of 
situations where it is not possible. 

Definition 2.4 

Let ( , )≺X  be a partially ordered set, 2:f →X X  and :h →X X . 

(1) f is said to have h-mixed monotone property if the following two conditions are satisfied: 

1 2 1 2 1 2( , , ) ( , ) ( , )x x y hx hx f x y f x y∀ ∈ ⇒≺ ≺X , 

1 2 1 2 1 2( , , ) ( , ) ( , )x y y hy hy f x y f x y∀ ∈ ⇒≺ ≻X . 

 If h i=
X

 (the identity map), we say that f has the mixed monotone property. 

(2) A point ( , )x y ∈ ×X X  is said to be a coupled coincidence point of f and h if ( , )f x y hx=  and ( , )f y x hy= , and their 

common coupled fixed point if ( , )f x y hx x= =  and ( , )f y x hy y= = . 

If X is a nonempty set, then the triple ( , , )g ≺X  will be called an ordered G-metric space if: 

 (i) ( , )gX  is a G-metric space, and 

 (ii) ( , )≺X  is a partially ordered set. 

Definition 2.5 

Let A and B be two self-mappings of a semi metric space (X, d). Then A and B satisfy the property E.A if there exists a 

sequence { }nx  such that ( ) ( )lim , lim , 0n n
n n

d Ax t d Bx t
→∞ →∞

= = , for some t X∈ . 

Definition 2.6 

Let ( , )gX  be a symmetric G-metric space. Let two mappings :h →X X  and 2:f →X X  satisfy the property E.A if there 

exists  sequences { }nx  and { }ny  such that ( )( ) ( )lim , , , lim , , 0n n n
n n

g f x y a a g hx a a
→∞ →∞

= = . 
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Definition 2.7 

An element ( , )x y ∈ ×X X  is called a couple fixed point for the mapping 2:f →X X  if ( , )f x y x=  and ( , )f x y y= . 

Definition 2.8 

An element ( , )x y ∈ ×X X  is called a coupled coincidence point of the mappings 2:f →X X  and :h →X X  if 

( , )f x y hx=  and ( , )f y x hy= . 

Definition 2.8 

Let X be a non-empty set. We say that the mappings :h →X X  and 2:f →X X  are commutative if ( , ) ( , )hf x y f hx hy= . 

Definition 2.9 

The mappings :h →X X  and 2:f →X X  are called weakly compatible if ( , ) ( , )hf x y f hx hy= whenever ( , )hx f x y=  and 

( , )hy f y x= . 

3. MAIN RESULTS 

Theorem 3.1 

Let ( , )gX  be a symmetric G-metric space. Let two mappings :h →X X  and 2:f →X X  satisfy the following conditions. 

(1) h and f are weakly compatible. 
(2) h and f satisfy (E.A) property. 

(3) 2( )f h⊂X X  and hX is a complete subset of X. 

(4) For all x, y, u, v, s, t ∈ X, the following condition holds: 

( ( , ), ( , ), ( , ))g f x y f u v f s t  ≤ { }max ( , , ), ( , , )g hx hu hs g hy hv ht   

Then h and f have unique common coupled coincidence fixed point. 

Proof 

 Since h and f satisfy (E.A) property, there exists a sequence { }nx , { }ny  in X such that 

( ( , ), , ) ( , , ) 0n n n
n n
Lt g f x y a a Lt g hx a a
→∞ →∞

= =  for some a∈X . 

( ( , ), , ) ( , , ) 0n n n
n n
Lt g f y x b b Lt g hy b b
→∞ →∞

= =  for some b∈X . 

Since X is symmetric G-metric space, we have 

( , , ) ( , , ) 0n n
n n
Lt g hx a a Lt g a a hx
→∞ →∞

= =
 

( , , ) ( , , ) 0n n
n n
Lt g hy b b Lt g b b hy
→∞ →∞

= =
 

By (G5), we have  

( ( , ), , ) ( ( , ), , ) ( , , )n n n n n ng f x y a hx g f x y a a g a a hx≤ +  

( ( , ), , ) 0n n n
n
Lt g f x y a hx
→∞

=  

So we have ( ),n n n
n n
Lt f x y Lt hx a
→∞ →∞

= = s 

( ),n n n
n n
Lt f y x Lt hy b
→∞ →∞

= =
 

Suppose hX is a complete subspace of X. Then a = hx for some x∈X . 

and b = hy for some y∈X  

We claim that ( , )f x y hx= ; ( , )f y x hy= . 

Indeed by (4), we have 

( ( , ), ( , ), ( , ))n ng f x y f x y f x y  ≤ { }max ( , , ), ( , , )n ng hx hx hx g hy hy hy  

Taking limit as n → ∞ , we have 

( ( , ), ( , ), ( , )) 0n n
n
Lt g f x y f x y f x y
→∞

=  

So we have ( , )f x y hx= ; ( , )f y x hy=  

Therefore,( ) 2,x y ∈X is a coupled coincidence point of f and h. The weak compatibility of f and h implies that 

( , ) ( , )f hx hy hf x y=  and then ( ( , ), ( , )) ( , ) ( , ) ( )f f x y f y x f hx hy hf x y h hx= = = ; 
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( ( , ), ( , )) ( , ) ( , ) ( )f f y x f x y f hy hx hf y x h hy= = = . 

Let us show that ( )( , ), ( , )f x y f y x  is a common coupled coincidence fixed point of f and h. 

Suppose ( ( , ), ( , )) ( , )f f x y f y x f x y≠  

In view of (4), it follows 

( ( , ), ( , ), ( ( , ), ( , )))g f x y f x y f f x y f y x  

≤ { }max ( , , ( , )), ( , , ( , ))g hx hx f x y g hy hy f y x  

= 0 

which is a contradiction. 

Therefore, ( , ) ( ( , ), ( , )) ( , )f x y f f x y f y x hf x y= =  and ( , )f x y  is a common coupled coincidence fixed point of f and h. The 

proof is similar when 2( )f X  is assumed to be a complete subspace of X since 2( )f h⊂X X . 

If ( , )f x y hx x= =  and ( , )f c d hc c= =  and ;x c y d≠ ≠ , then (4) gives 

( , , ) ( ( , ), ( , ), ( , ))g x c c g f x y f c d f c d=  

≤ { }max ( , , ), ( , , )g hx hc hc g hy hd hd  

= ( , , )g x c c  

which is a contradiction. 

So x = c; y = d which implies that 

( , )f x y hx x= = ; ( , )f y x hy y= = . Then (x, y) is a unique common coupled coincidence fixed point of f and h. 

Theorem 3.2 

Let ( , , )g ≺X  be a partially ordered symmetric G-metric space. Let 2:f →X X  :h →X X  satisfy the following conditions: 

(1) f has the mixed h-monotone property.  

(2) 2( )f h⊂X X  and hX is a complete subspace of X. 

(3) h and f satisfy (E.A) property. 

(4) f and h are weakly compatible.  

(5) Assume { }( ( , ), ( , ), ( , )) max ( , , ), ( , , )g f x y f u v f s t g x u s g y v t≤  for all x, u, s, y, v, t ∈ X for which  hx ≤ hu ≤ hs ∧ hy ≥ hv ≥ ht 

or hx ≥ hu ≥ hs ∧ hy ≤ hv ≤ ht.  

(6) There exist 0 0,x y ∈X  such that 0 0 0 0 0 0( , ) ( , )hx f x y hy f y x≤ ∧ ≥  or 0 0 0 0 0 0( , ) ( , )hx f x y hy f y x≥ ∧ ≤ . 

Then f and h have unique common coupled coincidence fixed point. 

Proof 

By (6), let 
0 0,x y X∈  such that 0 0 0 0 0 0( , ) ( , )hx f x y hy f y x≤ ∧ ≥ or 0 0 0 0 0 0( , ) ( , )hx f x y hy f y x≥ ∧ ≤ . Since 2( )f h⊂X X , 

we can choose 
1 1,x y X∈  such that ( )1 0 0,hx f x y=  and ( )1 0 0,hy f y x= . So 

0 1hx hx≤  or 
0 1hy hy≤ . 

By (1), we have ( ) ( )0 1 0 1, ,hx hx f x y f x y≤ ⇒ ≤ ; ( ) ( )0 1 1 0, ,hy hy f x y f x y≤ ⇒ ≤ . 

Again since 2( )f h⊂X X , we can choose 
2 2,x y X∈ such that 1 1 1 1 1 1( , ) ( , )hx f x y hy f y x≤ ∧ ≥ or 1 1 1 1 1 1( , ) ( , )hx f x y hy f y x≥ ∧ ≤ . 

So ( )2 1 1,hx f x y=  and ( )2 1 1,hy f y x= . Therefore 
0 1hx hx≤ or 

0 1hy hy≤ . Then by (1), we have ( ) ( )1 2 1 2, ,hx hx f x y f x y≤ ⇒ ≤ ; 

( ) ( )1 2 2 1, ,hy hy f x y f x y≤ ⇒ ≤ . 

Continuing this process, we can construct two sequences { }nx and { }ny in X such that ( ) ( )1 1 1, ,n n n n n nhx f x y hx f x y− − += ≤ = ; 

( ) ( )1 1 1, ,n n n n n nhy f y x hy f y x− − += ≤ = . 

By (3), ( ( , ), , ) ( , , ) 0n n n
n n
Lt g f x y a a Lt g hx a a
→∞ →∞

= =  for some a∈X . 

( ( , ), , ) ( , , ) 0n n n
n n
Lt g f y x b b Lt g hy b b
→∞ →∞

= =  for some b∈X . 

Then by Theorem 3.1, Then (x, y) is a unique common coupled coincidence fixed point of f and h. 
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Example 3.3 

Let X = � be equipped with standard order ≤ and G-metric given as ( ), , max{ , , }g x y z x y x z y z= − − − . Then ( , , )g ≺X  

is a partially ordered symmetric G-metric space. Define  2:f →X X  as ( ) 2
,

4

x y
f x y

−=  and :h →X X  as 
2

x
hx = . It is 

clear that f has the mixed h-monotone property. Also it is obvious that 2( )f h⊂X X  and hX is a complete subspace of X. 

As in the Theorem 3.2, all the conditions are satisfied. 
Then (0, 0) is the unique common coupled fixed point of f and h. 

4. CONCLUSION 

In this work, we proved common coupled coincidence fixed point for mappings with E.A property in partially symmetric           
G-metric space. We gave an example for our results. Our results improved and extended various results existing in the literature. 
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