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Abstract—Lung cancer remains a leading cause of 

cancer-related deaths globally, with early detection being 

critical for improving survival rates. The existing systems 

for lung cancer detection primarily rely on imaging 

techniques such as X-rays and computed tomography 

(CT) scans, which are manually interpreted by 

radiologists. While these methods have proven effective, 

they are limited by their dependency on human expertise, 

which is subject to fatigue, variability, and error. 

Detecting early-stage lung cancer is particularly 

challenging due to the subtlety of its early signs, such as 

small nodules that are difficult to discern. Additionally, 

manual interpretation is labor-intensive, time-consuming, 

and often inconsistent, especially in high-volume clinical 

settings. Even with the advent of computer-aided 

detection (CAD) systems, the accuracy remains 

suboptimal due to high false-positive rates and a reliance 

on radiologists for final decisions. This project addresses 

the limitations of the existing system by employing a 

hybrid artificial intelligence-based approach, combining 

the strengths of DenseNet201 and XGBoost. DenseNet201 

is leveraged for feature extraction from CT scan images 

using transfer learning, while XGBoost performs robust 

classification based on these features. This methodology 

significantly improves diagnostic accuracy, efficiency, 

and scalability. By automating nodule detection and 

classification, the proposed system reduces the risk of 

false positives and negatives, streamlining the diagnostic 

process. The integration of advanced AI models provides 

a scalable and consistent solution, laying the groundwork 

for more reliable, accessible, and early lung cancer 

detection in real-world clinical environments 
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INTRODUCTION 
OVERVIEW 

The project titled aims to develop an efficient and accurate 

system for diagnosing lung cancer from CT scan images. Lung 

cancer remains one of the leading causes of cancer-related deaths 

worldwide, and early detection plays a pivotal role in improving 

survival rates. However, traditional diagnostic methods, such as 

biopsies and radiological analysis, are time-consuming, 

subjective, and prone to human error. This project addresses 

these limitations by leveraging advancements in deep learning 

and machine learning techniques. The system utilizes a hybrid 

approach combining “Densenet201”, a deep convolutional 
neural network (CNN) known for its high efficiency in feature 

extraction, and “XGBoost”, a gradient-boosting algorithm 

renowned for its performance in structured data classification. 

The project pipeline involves preprocessing the CT scan 

images, extracting meaningful features using Densenet201, 

and classifying the data with XGBoost. This combination 

ensures a robust and accurate classification of lung cancer, 

even with limited labeled datasets, by leveraging transfer 

learning and gradient-boosting methodologies. The primary 

goal of this project is to create a system capable of automating 

the lung cancer detection process, reducing diagnostic errors, 
and enabling faster decision-making. The system is evaluated 

using performance metrics such as accuracy, precision, recall, 

and F1-score, ensuring its reliability for real-world 

applications. Additionally, it addresses scalability and 

deployment considerations, making it a valuable tool for 

integration into clinical workflows. 

PROBLEM STATEMENT 

The problem addressed by this project centers around the 

challenges in accurately and efficiently diagnosing lung 

cancer from CT scan images. Firstly, traditional diagnostic 

methods, such as radiological analysis and biopsies, are time-
intensive, prone to human error, and often result in delayed 

detection, which is critical for patient survival. Secondly, 

existing automated systems for lung cancer detection face 

limitations in terms of accuracy, scalability, and their ability to 

generalize across diverse datasets due to the complex nature of 

medical imaging data. Lastly, the lack of a unified approach 

that combines the strengths of deep learning for feature 

extraction and machine learning for structured data 

classification hinders the development of robust diagnostic 

tools. This project aims to address these challenges by 

proposing a hybrid system utilizing Densenet201 for feature 

extraction and XGBoost for classification, ensuring improved 
accuracy, efficiency, and reliability in lung cancer detection. 

PROJECT DESCRIPTION 

The early detection of lung cancer remains one of the most 

critical challenges in the medical field, with timely diagnosis 

often making the difference between life and death. In recent 
years, artificial intelligence (AI) and deep learning have 

emerged as transformative tools in medical diagnostics, 

offering new avenues for enhancing the accuracy and 

efficiency of disease detection. This study delves into an 
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innovative approach to lung cancer detection, leveraging the 

power of transfer learning models—specifically, the XGBoost 

and DenseNet201 architectures applied to the IQ-OTH/NCCD 
dataset, a comprehensive collection of medical images. Transfer 

learning, which involves fine-tuning pre-trained models on 

specific datasets, has proven to be a highly effective strategy in 

various domains, including medical imaging. By utilizing the 

pre-existing knowledge embedded within the XGBoost and 

DenseNet201 models, this research aimed to adapt these deep 

learning architectures for the specialized task of lung nodule 

classification. The IQ-OTH/NCCD dataset provided a robust 

foundation for this endeavor, allowing the models to be trained 

and validated on a diverse array of medical images, 

representative of real-world clinical scenarios. The study 

employed rigorous methodologies to evaluate the performance of 
the fine-tuned models, focusing on critical metrics such as 

sensitivity, specificity, and accuracy. These metrics are vital in 

assessing the models' ability to correctly identify lung nodules, 

distinguishing between benign and malignant cases with high 

precision. The results from this research were promising, 

showcasing the models' capability to effectively contribute to 

early lung cancer detection, potentially leading to better patient 

outcomes. Beyond the technical aspects, this study also placed a 

strong emphasis on ethical considerations, particularly regarding 

patient privacy and data security. As AI and machine learning 

increasingly permeate the healthcare sector, safeguarding 
sensitive medical data becomes paramount. This research 

adhered to stringent ethical standards, ensuring that all data 

handling processes were conducted with the utmost care and in 

compliance with relevant regulations. In conclusion, this study 

represents a significant step forward in the integration of AI into 

medical diagnostics, specifically in the context of lung cancer 

detection. The use of transfer learning models like XGBoost and 

DenseNet201, combined with the rich IQ-OTH/NCCD dataset, 

demonstrates the potential to enhance screening processes and 

improve early diagnosis. By addressing both the technical 

challenges and ethical considerations, this research not only 

contributes to the scientific community but also offers practical 
implications for the future of healthcare, where AI-driven tools 

may become integral to saving lives through more accurate and 

efficient disease detection. 

 

BACKGROUND 

Lung cancer remains one of the most lethal forms of cancer 

worldwide, primarily due to its late detection and the aggressive 

nature of the disease. Early detection significantly increases the 

chances of successful treatment and survival, yet it poses a 

substantial challenge, given that the symptoms often appear at 

advanced stages. Traditionally, radiologists rely on imaging 
techniques such as X-rays and CT scans to detect lung nodules, 

which may be indicative of cancer. However, the manual 

interpretation of these images is subject to human error, 

variability in expertise, and can be time-consuming. These 

challenges highlight the urgent need for more reliable, efficient, 

and accurate diagnostic tools. In recent years, the advent of 

artificial intelligence (AI) and machine learning has 

revolutionized various industries, including healthcare. These 

technologies, particularly deep learning, have shown tremendous 

promise in automating and enhancing the diagnostic process. 

Deep learning models, especially convolutional neural networks 

(CNNs), have been effectively employed in medical image 
analysis, outperforming traditional methods in some cases. 

Transfer learning, a technique where a model developed for one 

task is reused as the starting point for another related task, has 

gained popularity in this domain. It allows for the application of 

pre-trained models on large datasets to new, specific tasks with 

limited data, reducing the computational resources and time 

required for model development. In the context of lung cancer 

detection, transfer learning offers a valuable approach. By 

fine-tuning pre-existing, well-trained models on datasets 

specific to lung nodule classification, researchers can create 
highly specialized models capable of identifying cancerous 

nodules with high accuracy. The IQ-OTH/NCCD dataset, 

which contains a large collection of medical images, provides 

an ideal resource for training such models. This dataset 

includes various types of lung nodules, representing a wide 

range of cases encountered in clinical practice. The 

application of transfer learning to lung cancer detection has 

the potential to significantly enhance early diagnosis, leading 

to better patient outcomes. However, as with any technology 

in the medical field, the use of AI and machine learning comes 

with ethical considerations. Ensuring patient privacy, securing 

sensitive medical data, and maintaining transparency in AI 
decision-making processes are critical to the responsible 

deployment of these technologies. This background sets the 

stage for understanding the significance of the study, which 

focuses on applying advanced transfer learning models, 

specifically XGBoost and DenseNet201, to the IQ-

OTH/NCCD dataset. The research aims to fine-tune these 

models for lung nodule classification, evaluate their 

performance using key metrics, and address the ethical 

considerations associated with AI in healthcare. The findings 

from this study contribute to the growing body of knowledge 

in AI-driven medical diagnostics, offering a promising tool for 
improving the early detection and treatment of lung cancer. 

 

PROPOSED FRAMEWORK 
The proposed system introduces an advanced AI-driven 

approach for the detection of lung cancer, leveraging transfer 

learning techniques and state-of-the-art machine learning 

models to enhance the accuracy, efficiency, and consistency 

of lung nodule classification. This system addresses the 

limitations of the existing manual and CAD-based methods 
by automating the detection process and providing a robust, 

scalable solution that can be integrated into clinical practice. 

DenseNet201 Model: The proposed system employs 

DenseNet201, a deep convolutional neural network (CNN) 

architecture known for its densely connected layers, which 

allow for more efficient feature reuse and gradient flow. 

DenseNet201 has been pre-trained on large-scale image 

datasets (such as ImageNet), enabling it to recognize complex 

patterns and features in images. XGBoost Model: The 

proposed system integrates the DenseNet201 model with 

XGBoost, a powerful gradient boosting algorithm. After the 

DenseNet201 model processes the input images, it extracts 
high-level features representing the lung nodules. These 

features are then fed into the XGBoost classifier, which uses 

them to make the final classification decision. 
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SYSTEM ARCHITECTURE 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. System Architecture 
 

Data Collection: The project begins with the collection of a 
dataset, which is a crucial step in building an accurate and 

reliable model for lung cancer detection. The dataset primarily 
comprises CT scan images of lungs, sourced from well-known 

repositories such as IQ-OTH/NCCD or similar databases. These 
datasets contain labeled images that classify each scan as either 

benign (non-cancerous) or malignant (cancerous). Alongside the 
image data, metadata such as patient details and diagnostic labels 

are included. This rich dataset serves as the foundation for the 
project, providing the raw information required to train and 

evaluate the models. 
 

Data Pre-processing: Once the dataset is collected, it undergoes 
preprocessing to prepare it for further analysis and model 

training. Preprocessing ensures that the data is clean, uniform, 
and ready for computational tasks. Image data is normalized, 

which involves scaling the pixel values to a range that the model 
can efficiently interpret. Additionally, the CT scan images are 

resized to match the input dimensions required by the 
Densenet201 model. If the dataset is small, data augmentation 

techniques such as rotation, flipping, and cropping may be 
applied to increase its size and diversity. Labels are encoded into 

numerical formats to make them suitable for training machine 
learning models. Preprocessing is a critical step to enhance model 

performance and ensure reliable outcomes. 
 

Data Splitting: After preprocessing, the dataset is split into two 
subsets: training and testing data. The training set is used to train 

the models, while the testing set is reserved for evaluating their 
performance. This separation ensures that the models are tested 

on unseen data, which provides an accurate measure of their 
ability to generalize to new cases. Typically, the data is split in a 

ratio such as 80:20 or 70:30, depending on the dataset size and 
project requirements. Proper data splitting is essential to avoid 

overfitting and ensure the reliability of the final models. 
 

Transfer Learning with Densenet201: Densenet201, a pre-
trained convolutional neural network, is utilized as the backbone 

for feature extraction in this project. Transfer learning leverages 
the pre-trained knowledge of Densenet201, which has already 

been trained on large datasets like ImageNet. By fine-tuning the 
model on the lung cancer dataset, it adapts to the specific task of 

detecting cancer from CT scans. Densenet201 extracts high-level 
features, such as edges, textures, and patterns, which are critical 

for distinguishing between benign and malignant cases. This step 
reduces the computational complexity and training time while 

improving the model accuracy. 

 

Model Training: Densenet201: Once the feature extraction process 
is complete, the Densenet201 model is trained using the 

preprocessed training dataset. During this phase, the model learns 
to identify patterns and structures in the CT scan images that 

indicate whether a case is benign or malignant. Training involves 
optimizing the model's parameters using techniques like 

backpropagation and gradient descent. Hyperparameters such as 
learning rate, batch size, and the number of epochs is fine-tuned to 

achieve the best possible performance. The trained Densenet201 
model serves as the first layer of classification in the hybrid system. 

 

Feature Extraction for XGBoost: After the Densenet201 model is 

trained, intermediate features are extracted from its penultimate 
layer. These features represent a condensed form of the information 

learned by the deep learning model and are highly descriptive. 
These extracted features are then used as input for the XGBoost 

model. This step is crucial because it bridges the deep learning and 
machine learning components of the project, combining their 

strengths to achieve better performance. 
 

Model Training: XGBoost: With the extracted features from 
Densenet201, the XGBoost classifier is trained to further classify 

the data into benign or malignant categories. XGBoost is a 
gradient-boosting algorithm that excels at structured data 

classification tasks. It refines the classification process by focusing 
on cases where the Densenet201 model might have uncertainties. 

Training the XGBoost model involves splitting the feature data into 
training and validation sets, optimizing its hyperparameters, and 

ensuring that it effectively learns patterns in the data. This 
additional layer of classification enhances the overall accuracy and 

reliability of the system. 
 

Model Evaluation: Both the Densenet201 and XGBoost models 
are evaluated on the testing dataset to determine their effectiveness 

in detecting lung cancer. Evaluation metrics such as accuracy, 
precision, recall, F1-score, and confusion matrices are computed to 

analyze the models' performance. This step ensures that the models 
generalize well to unseen data and provides insights into any areas 

for improvement. The evaluation process confirms that the hybrid 
system is robust and capable of delivering reliable predictions in 

real-world scenarios. 
 

Model Prediction: After evaluation, the trained models are used to 
make predictions on new CT scan images. For each input, the 

Densenet201 model processes the image and extracts features, 
which are passed to the XGBoost classifier for final classification. 

The models predict whether the scan represents a benign or 
malignant case. This dual-layered prediction process ensures 

accuracy and confidence in the results, with predictions being 
consistent and aligned with clinical requirements. 

 
Final Output: The final output of the system provides a clear 

classification for each CT scan image. Benign cases are labeled and 
highlighted in green, indicating no presence of cancer, while 

malignant cases are labeled in red, indicating the presence of 
cancerous growths. This output can be integrated into clinical 

systems to assist medical professionals in making timely and 
accurate diagnoses. The system’s fast and reliable predictions can 

significantly improve early detection rates and patient outcomes. 
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METHODOLOGY 

DATASET PREPARATION 

The dataset preparation phase is crucial for the success of 

the project, as it lays the foundation for building accurate 

models. The dataset consists of CT scan images of lungs, 

sourced from publicly available datasets such as IQ-

OTH/NCCD or proprietary databases. These images are 

annotated with labels indicating whether the cases are 

benign (non-cancerous) or malignant (cancerous). 

Steps Involved in Dataset Preparation: 

Data Collection: CT scan images are collected from 

reliable sources. The dataset includes a wide variety of 
images to ensure that the system can generalize across 

different patient profiles and medical conditions. 

Metadata Collection: Along with the images, metadata 

such as patient demographics and diagnostic labels are 

gathered to aid in further analysis. 

Labeling: Each image is labeled as either benign or 

malignant based on clinical annotations. This labeling is 

critical for supervised learning, as it allows the model to 

learn patterns associated with each class. 

Data Cleaning: The dataset is cleaned by removing 
duplicate, irrelevant, or low-quality images (e.g., blurred or 

incorrectly labeled images). This step ensures the integrity 

of the dataset and prevents noise from affecting the model's 

performance. 

Data Augmentation: To enhance the dataset’s diversity 

and prevent overfitting, augmentation techniques are 

applied. These include rotation, flipping, scaling, and 

contrast adjustments to simulate variations in image 
acquisition conditions. 

DATASET PREPROCESSING 

Dataset preprocessing ensures that the CT scan images are 

in a format compatible with deep learning and machine 

learning models. Proper preprocessing enhances the 

efficiency and accuracy of the training process. 

Steps Involved in Dataset Preprocessing: 

Image Resizing: All images are resized to 224x224 pixels, 

which is the input size required by the Densenet201 model. 

Resizing ensures uniformity and reduces computational 
costs. 

Normalization: Pixel values are normalized to a range of 0 

to 1 by dividing each pixel by 255. This scaling helps the 

model converge faster during training by standardizing the 

input data. 

Color Channel Handling: The CT scan images, typically 

grayscale, are converted into a format suitable for deep 

learning models, which often expect three-channel (RGB) 

inputs. 

Splitting the Dataset: The dataset is divided into training, 
validation, and testing sets. A typical split might allocate 

70% of the data for training, 15% for validation, and 15% 

for testing. This step ensures the models are trained and 

evaluated on distinct subsets of data. 

Data Shuffling: Before splitting, the dataset is shuffled to 

ensure randomness, which prevents any biases in the 

training, validation, or testing sets. 

 

DEEP AND MACHINE LEARNING AGORITHMS 

DenseNet201: (Deep Learning Model) 
DenseNet201 is a convolutional neural network (CNN) 

that uses dense connections to improve feature 

propagation and reduce the vanishing gradient problem. 

It consists of densely connected layers, where each layer 

receives input from all preceding layers, enhancing 

feature reuse and efficiency. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig.2. Architecture of DenseNet201 
 

Working of DenseNet201:  

Input Layer: CT scan images, resized to 224x224 pixels, are passed 

into the model. 
 

Convolutional Layers: The image is processed through a series of 
convolutional layers, which detect low-level features like edges and 

textures. 
 

Dense Blocks: Dense connections ensure that each layer has direct 
access to the gradients and features of all preceding layers, leading to 

improved learning efficiency. 
 

Global Pooling: A global average pooling layer reduces the spatial 
dimensions of the feature map, making it computationally efficient. 

Output Layer: The output is either a probability distribution over the 
classes (benign or malignant) or extracted features for further 

classification. 
 

Key Strengths of DenseNet201: 

•   Efficient feature propagation through dense connections. 

•   Reduced number of parameters compared to traditional CNNs. 
•   High accuracy in detecting patterns in medical images. 
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XGBOOST: (Machine Learning Algorithm) 

 
XGBoost is a gradient-boosting algorithm that excels in 

structured data classification. It uses decision tree ensembles to 

predict the class labels based on the features extracted by 

Densenet201. 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
 

 

 

 

 

Fig.3. Architecture of XGBoost 

 

Working of XGBoost: 

Input Features: Features extracted from the penultimate 

layer of Densenet201 are fed into the XGBoost classifier. 

Training: The classifier learns patterns in the data by 

building an ensemble of decision trees, each focusing on 

reducing the error of the previous tree. 

Prediction: The trained XGBoost model predicts the 

likelihood of each image belonging to the benign or 

malignant class. 

 

Key Strengths of XGBoost: 

 Handles Structured data efficiently. 

 Optimized for speed and accuracy 

 Robust to overfitting due to regularization techniques. 

 

MODEL EVALUATION 

After training, both DenseNet201 and XGBoost are 

evaluated to ensure their performance meets the project 

objectives. Evaluation metrics such as accuracy, precision, 

recall, F1-score, and confusion matrices are computed. The 

hybrid system is expected to provide reliable predictions 

for lung cancer detection, with each component 

contributing uniquely to the final classification. This 

methodology ensures a robust pipeline for data processing, 
feature extraction, model training, and evaluation, 

ultimately leading to an efficient lung cancer detection 

system. 

 

 

 

 

 

 

 

 

OUTCOME AND RESULTS 
 

 
Fig.4. Code And output Screenshot of Evaluating XGBoost 

Model 
 

 

 
Fig.5. Output Screenshot for Confusion Matrix of 

XGBoost 

 

 
Fig.6. Accuracy of DenseNet201 
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Fig.7. Output Accuracy graph of Densenet201 

 

 
Fig. 8. Output for Loss graph of DenseNet201 

 

 
Fig.9. Output Screenshot of Confusion Matrix for 

DensenNet201 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 

 
 
 

 

 

 

 

Fig. 9. Output Graph of accuracy after fine tuning of 
DensNet201 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10. Output Graph of loss after fine tuning of DensNet201 
 

 

 

Fig. 11. Output Screenshot of Confusion Matrix Confusion 

Matrix for DenseNet201 after Fine-Tuning 
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CONCLUSION 
In conclusion, this project successfully demonstrates the potential 

of transfer learning models, specifically XGBoost and 

DenseNet201, in the early detection of lung cancer. By 

leveraging the IQ-OTH/NCCD dataset, the fine-tuned models 
were able to achieve promising results in lung nodule 

classification, showcasing strong performance across key metrics 

such as sensitivity, specificity, and accuracy. The rigorous 

attention to ethical considerations, particularly in the areas of 

patient privacy and data security, underscores the feasibility of 

integrating such AI-driven approaches in clinical settings. This 

research not only contributes to the growing body of knowledge 

in medical diagnostics but also highlights the potential of 

artificial intelligence to enhance the efficiency and precision of 

lung cancer screening, offering a valuable tool in the fight against 

this critical health challenge. 
The project demonstrates the effectiveness of transfer learning 

models like DenseNet201 and XGBoost for early lung cancer 

detection but identifies several areas for future enhancement to 

improve performance, scalability, and clinical applicability. One 

promising direction is the integration of multi-modal data, such 

as combining imaging data (e.g., CT scans, MRIs) with non-

imaging data like genetic profiles, medical histories, and 

laboratory results. This approach can provide a more 

comprehensive understanding of a patient’s health, enhancing 

diagnostic accuracy and enabling personalized lung cancer 

detection and treatment. 

Improving model interpretability is another critical area for future 
research, as deep learning models are often perceived as "black 

boxes." Explainable AI (XAI) techniques, such as Grad-CAM, 

can be employed to visualize which features or regions in an 

image contribute most to predictions, making the model’s 

decision-making process more transparent. Providing clinicians 

with clear justifications for AI-driven results would increase trust 

and adoption in clinical workflows. Enhanced interpretability 

ensures that healthcare professionals can verify predictions 

before making critical decisions. 

Further optimization of model architectures could lead to 

significant improvements in efficiency, speed, and scalability. 
Lightweight architectures like EfficientNet or simplified 

DenseNet variants could reduce computational costs, making AI 

solutions accessible in resource-constrained environments. 

Techniques like model pruning, quantization, and knowledge 

distillation can also help compress model size without sacrificing 

performance, enabling deployment in real-time clinical settings. 

Collaborative diagnostic systems, where AI works alongside 

human radiologists, represent a practical application for 

enhancing diagnostic accuracy. AI can act as a second opinion, 

flagging suspicious nodules for further review, thereby reducing 

false negatives. Real-time feedback systems could also support 

radiologists during live screenings, helping to improve efficiency 
in high-stress or high-volume environments. 

Validating these models in real-world clinical settings is essential 

for ensuring generalizability and reliability. Large-scale clinical 

trials across diverse populations and healthcare systems can help 

confirm the models’ effectiveness in varied contexts. 

Additionally, post-deployment monitoring can ensure continued 

accuracy and adaptability as new data is introduced, maintaining 

the model's relevance over time. 

Finally, future work could focus on customizing AI models to 

detect specific subtypes of lung cancer, such as small cell and 

non-small cell lung cancer. Subtype-specific or adaptive models 
could provide more precise and clinically relevant information, 

evolving with advancements in medical understanding of the 

disease. These improvements would ensure that AI tools remain 

at the forefront of lung cancer detection and treatment. 
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