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Abstract—The examination of electroencephalogram (EEG) 

signals has emerged as a fundamental component in the 

diagnosis of neurological illnesses and the comprehension of 

brain function. The intricate and high-dimensional 

characteristics of EEG signals present considerable obstacles for 

effective and precise abnormality detection. This proposal 

presents an enhanced EEG signal processing framework utilising 

feature extraction and threshold-based classification to facilitate 

precise and efficient detection of abnormalities. The suggested 

method entails the pre-processing of EEG signals to eliminate 

noise, succeeded by the extraction of features to encapsulate the 

complex dynamics of cerebral activity. Classification was 

executed via a threshold-based methodology, aimed at ensuring 

simplicity, interpretability, and real-time application. 

Performance parameters such as accuracy, power, signal 

bandwidth, skewness, kurtosis, and energy efficiency were 

utilised to meticulously assess the system. Experimental results 

demonstrate the framework's capacity to attain high 

classification accuracy, efficiently identifying brain anomalies 

like epilepsy, sleep problems, and other irregularities. The work 

highlights the importance of effective feature extraction in 

reducing the high-dimensional complexity of EEG signals, 

enabling swift and accurate diagnosis. The approach is 

engineered for efficiency and adaptability, rendering it 

appropriate for portable devices or distant healthcare systems. 

Future enhancements intend to employ more sophisticated 

feature extraction methods, improved thresholds, and advanced 

machine learning algorithms to increase the system's accuracy 

and versatility. 

 
Keywords— EEG, brainwave recognition, machine learning, 

feature extraction, Abnormality Detection. 

 
I. INTRODUCTION 

EEG signals are intricate and susceptible to noise 

from factors such as muscle contractions, eye blinks, and 

environmental disturbances, complicating real-time 

processing and anomaly detection. These artefacts hinder the 

extraction of significant patterns, which are essential for 

detecting disorders like early seizure onset or cognitive 

deficits. Creating an effective real-time system necessitates 

the preprocessing of EEG signals to eliminate noise, the 

extraction of pertinent features, and the implementation of 

classification methods such as threshold-based models or 

machine learning algorithms for precise anomaly 

identification [1]. 

 

This technology can deliver prompt alerts and 

practical insights, aiding physicians in detecting neurological 

problems and facilitating early intervention [2]. This method 

can improve detection accuracy and facilitate continuous 

monitoring, hence enhancing patient health management and 

yielding superior outcomes in neurological care. 

Electroencephalography (EEG) is an essential 

instrument for observing and evaluating cerebral activity, 

providing significant insights into neurological function. It has 

proven essential in detecting illnesses including epilepsy, 

sleep problems, and various cerebral anomalies. EEG data is 

intricate and comprises diverse waveforms, including delta, 

theta, alpha, and beta waves, each associated with distinct 

brain states [3]. We extract pertinent elements such as power, 

amplitude, and frequency band information that can function 

as dependable markers of normal or aberrant behaviour. These 

attributes diminish the data's dimensionality, facilitating more 

effective classification of signals by machine learning 

algorithms. 

The complexity of EEG signals, characterised by 

high dimensionality, non-linearity, and noise susceptibility, 

renders human analysis both time-consuming and error-prone. 

This requires the creation of automated techniques to 

effectively and precisely analyse EEG data. Machine learning 

(ML) has surfaced as a viable method for tackling these 

difficulties. Support Vector Machines (SVMs) have garnered 

attention for their capacity to manage intricate datasets and 

categorise patterns with exceptional accuracy. Utilising SVMs 

for EEG analysis entails a sequence of procedures, including 

the preprocessing of raw signals, the extraction of significant 

features, and the implementation of classification models to 

differentiate between normal and pathological activity [4]. 

The proposal presents a framework based on SVM 

for the analysis of EEG signals and the detection of 

abnormalities. The methodology employs feature extraction 

techniques to obtain statistical and spectral attributes of the 

signals, while dimensionality reduction guarantees 

computational efficiency. The model is assessed by various 

performance metrics, such as accuracy and F1-score, to 

confirm its efficacy in detecting anomalies in EEG data. 
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 A performance matrix offers a comprehensive assessment 

of a system's precision and efficacy by examining critical 

parameters, such as accuracy, power, energy, peak-to-peak 

amplitude, skewness, kurtosis, and F1 score. These criteria 

guarantee the system's dependability in differentiating 

between healthy and pathological EEG readings. The 

technique offers a comprehensive framework for evaluating 

performance, enhancing diagnostic accuracy and facilitating 

practical healthcare applications, hence allowing for more 

precise and prompt identification of neurological problems. 

 

II. LITERATURE SURVEY 
Recent research have thoroughly investigated EEG 

preprocessing, feature extraction (including skewness, 

kurtosis, energy, bandwidth, entropy), and threshold-based 

classification to identify neurological abnormalities such as 

epilepsy and sleep disorders. 

For example, Albaqami [5] et al. employed wavelet 

packet decomposition alongside statistical features (such as 

skewness, kurtosis, energy, and entropy) and classified EEG 

data using gradient boosting decision trees, attaining 

approximately 88% accuracy, thereby underscoring the 

effectiveness of interpretable, rapid methodologies 

appropriate for real-time applications. 

Omerhodzic [6] et al. employed DWT-based energy 

characteristics across EEG sub-bands and a neural network 

classifier to effectively differentiate epileptic signals, 

indicating the viability for portable detection systems. 

Additional research has highlighted higher-order 

moments, such as skewness and kurtosis: a study utilising 

maximal overlap wavelet distributions demonstrated that 

skewness characteristics can differentiate seizure types, with 

SVM classification achieving up to 96% accuracy when 

optimised [7]. 

Furthermore, investigations of intracranial EEG and 

MEG in paediatric epilepsy revealed that diseased regions 

displayed markedly increased skewness and kurtosis relative 

to controls, demonstrating high sensitivity (~ 88 %) and 

specificity (~ 89 %) in identifying the epileptogenic lobe [8]. 

Comprehensive evaluations highlight that attributes 

such as variance, energy, nonlinear energy, entropy, 

skewness, kurtosis, line length, and wavelet-derived features 

are regularly efficacious in seizure detection tasks, frequently 

diminishing Bayesian error by 5 to 13% and enhancing 

classifier performance. Additional studies emphasise energy 

efficiency through mechanisms such as differential energy and 

derivatives, which minimise error rates while maintaining 

computational simplicity for real-time implementation. 

Beyond epilepsy, comprehensive EEG analyses 

highlight how extensive feature extraction alleviates the high 

dimensionality of EEG data, enabling swift and reliable 

classification. The literature endorses your emphasis on 

interpretable threshold-based classifiers with efficient feature 

sets, optimally designed for portable or remote healthcare 

systems.  

 

 

The suggested future approach of including advanced 

feature extraction and adaptive thresholds corresponds with 

growing trends in hybrid or ensemble classifiers that maintain 

real-time practicality while enhancing accuracy and 

adaptability. 
 

III. METHODOLOGY  

A. Block Diagram 
Figure 1 depicts a systematic method for identifying 

anomalies in EEG signals through machine learning. 

Electroencephalogram (EEG) data is initially acquired with 

the conventional 10-20 electrode placement approach. The 

raw signals are subjected to preprocessing to eliminate noise 

and artefacts, so ensuring the data is clean and appropriate for 

analysis. After pre-processing, essential features are retrieved 

from the signals, encompassing significant time-domain, 

frequency-domain, or nonlinear attributes. The features are 

subsequently input into a machine learning model, which is 

taught to identify patterns linked to atypical brain activity. 

The model's analysis identifies irregularities in the EEG 

signals. The technique incorporates a feedback loop whereby 

the outcomes of anomaly detection can inform and enhance 

subsequent preprocessing steps, establishing an iterative and 

adaptive detection system. 

 

 
 

Figure1: Proposed Block Diagram 

B. Data Collection and Analysis 
Retrieved publicly accessible EEG datasets from online 

repositories such as PhysioNet. The datasets comprise EEG 

signals from both healthy subjects and patients with 

neurological disorders, establishing a basis for model training 

and evaluation. A collection of 64-channel EEG recordings 

from participants engaged in various motor imagery tasks has 

been provided to PhysioNet by the creators of the BCI2000 

instrumentation system for brain-computer interface research.  

Subjects executed various movement and visual activities 

while 64-channel EEG data were obtained using the BCI2000 

device. Each participant completed 14 experimental trials: two 

one-minute baseline trials (one with eyes open and one with 

eyes closed), and three two-minute trials for each of the 

following four tasks: 
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A target manifests on either the left or right side of the 

screen. The subject repeatedly opens and shuts the designated 

fist until the target vanishes. Subsequently, the individual 

attains a state of relaxation.  

A target manifests on either the left or right side of the 

screen. The patient envisions repeatedly opening and shutting 

the appropriate fist until the target vanishes. Subsequently, the 

individual attains a state of relaxation.  

A target manifests at either the upper or lower portion of 

the screen. The subject alternately clenches both fists (when 

the target is above) or both feet (when the target is below) 

until the target vanishes. Subsequently, the individual attains a 

state of relaxation.  

A target manifests at either the upper or lower portion of 

the screen. The subject envisions opening and closing either 

both fists (if the target is positioned above) or both feet (if the 

target is positioned below) until the target vanishes. 

Subsequently, the subject becomes relaxed. 

 
Figure2: Channel 1 EEG Signal 

 
Figure3: Channel 2 EEG Signal 

C. Pre-processing of Raw Data 
The raw EEG signal is non-stationary and has limited spatial 

resolution. EEG signals are vulnerable and significantly 

influenced by artefacts and noise. These artefacts may 

influence the information and analysis of the collected signals. 

Consequently, the detection and elimination of artefacts, 

whether in clinical diagnosis or practical applications, 

constitutes the most critical pre-processing step prior to their 

use to mitigate their influence on the feature extraction phase. 

At this stage, it is essential to determine the frequency and 

channel from the EEG, as it is generated by multiple 

electrodes. 

 

 

 

 

 

Filters are implemented by mathematical 

methodologies. This phase purges the data by excluding 

frequencies beyond the specified range. A high-pass filter 

eliminates gradual signal fluctuations, such as baseline drift 

resulting from perspiration or electrode displacement. 

Standard cutoff: 0.5 Hz to 1 Hz. A low-pass filter eliminates 

high-frequency noise from muscle movement, power line 

interference, or environmental disturbances. Standard cutoff: 

30 Hz to 50 Hz. A band-pass filter integrates high-pass and 

low-pass filtering to preserve only the pertinent EEG 

frequency range. The filtered signals are illustrated in Figures 

4 and 5. 

Standardising the signal amplitude to provide 

uniformity between electrodes and recording sessions. 

Normalisation modifies the signal to ensure it resides within a 

standardised range, often characterised by a mean of 0 and a 

standard deviation of 1. Muscle contractions generate high-

frequency noise in EEG data. Employ a low-pass filter with a 

cutoff frequency of 40–50 Hz to attenuate muscular noise. 

The general frequencies of interest in EEG are specified by 

       - Delta (0.5–4 Hz): Deep sleep or unconsciousness. 

       - Theta (4–8 Hz): Drowsiness or meditation. 

       - Alpha (8–13 Hz): Relaxed, wakeful state. 

       - Beta (13–30 Hz): Active thinking, motor activity. 

       - Gamma (30–100 Hz): Higher cognitive functions. 

                                 

 
Figure 4: Filtered EEG Signal 1 

 

 
Figure 5: Filtered EEG Signal2 

 

An artifact-free EEG signal is achieved by 

eliminating disturbances such as eye blinks, muscle 

contractions, and external interference by methods like 

bandpass filtering, Independent Component Analysis (ICA), 

and notch filtering, as seen in figures 7 and 8.  
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This guarantees that the signal precisely represents 

cerebral activity. Segmentation entails isolating a certain 

segment of the processed signal according to temporal or 

sample indices (e.g., samples 8300–8500). This approach 

concentrates analysis on the area of interest while eliminating 

noise and artefacts, rendering it appropriate for subsequent 

feature extraction or classification tasks. 

 

 

Figure 6: Noise Free Channel1 

 
 

Figure 7: Noise Free Channel2 

D. Performance Evaluation 

In the analysis of EEG signals for abnormalities, a range of 

statistical and signal-derived parameters are typically 

employed, such as mean, variance, power, energy, skewness, 

kurtosis, peak-to-peak amplitude, and bandwidth. These 

attributes define the EEG signal and are essential for detecting 

anomalies. The following is a framework for evaluating the 

performance of these features: 

 Mean 

The mean amplitude of the EEG signal throughout a temporal 

duration. Denotes the fundamental activity level of the signal, 

crucial in identifying anomalies such as spikes or bursts. 

Analyse the average of normal and abnormal signals to detect 

substantial discrepancies. 

 

Where N  = Number of data points; = Individual data point 

in the signal 

 

 

 

 

 

 

Variance 

The variability or dispersion of signal amplitudes relative to 

the mean. Elevated variance may signify anomalies or atypical 

cerebral activity, such as epileptic spikes. Examine the 

standard deviation to evaluate signal variability. Utilise 

variance ratio tests to differentiate between normal and 

abnormal groups. 

 
Where  = Individual data point in the signal; N = Number 

of data points 

 Power 

The aggregate signal power inside a designated frequency 

band, typically computed using the Power Spectral Density 

(PSD). Illustrates the energy allocation among brainwave 

frequencies (delta, theta, alpha, beta, gamma). Conduct band-

specific power analysis to identify anomalies in frequency 

domains. Utilise metrics such as relative power or power ratio 

for comparisons across frequency bands. 

 

Where  = Individual data point; N   = Number of data 

points. 

 

Energy 

The cumulative energy of the signal over time, determined by 

the summation of squared amplitudes. Denotes the aggregate 

signal strength and is responsive to bursts or high-amplitude 

fluctuations. Evaluate the overall energy of signals in both 

normal and pathological conditions. Employ statistical 

normalisation to ensure equitable comparison among people. 

Energy =     

Where  = Individual data point in the signal; N = Number 

of data points. 

 

Skewness 

The asymmetry of the signal amplitude distribution relative to 

the mean. Facilitates the identification of anomalies, as 

skewness diverging from zero may signify irregular patterns. 

Positive skew: Signifies extended tails towards elevated 

amplitudes. Negative skew: Signifies extended tails towards 

lower amplitudes 

.  

Where μ = Mean of the signal; σ = Standard deviation of the 

signal; N = Number of data points; xi = Individual data point 

 

Kurtosis 

The kurtosis of the signal amplitude distribution. Elevated 

kurtosis levels may signify significant peaks or temporary 

irregularities in the signal. Analyse the kurtosis values of 

normal and aberrant signals. Identify epileptic spikes or other 

brief high-amplitude occurrences. 
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Where μ = Mean of the signal; σ = Standard deviation of the 

signal; N = Number of data points; = Individual data point 

 

Peak-to-Peak Amplitude 

The disparity between the maximum and minimum amplitude 

of the signal. Detects significant amplitude fluctuations, 

frequently associated with artefacts or pathogenic 

occurrences. Threshold-based analysis for identifying 

anomalously high or low values. Temporal domain 

comparisons for baseline normalisation 

Power =max(x)−min(x) 

Where max(x) = Maximum value of the signal; min(x) = 

Minimum value of the signal. 

 

 

 

 

Table 1: Analysis based on Performance metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bandwidth 

 

The spectrum of frequencies where the signal energy is 
focused. Denotes the dispersion of frequency components, 
facilitating the differentiation between normal and 
pathological brainwave activity. Determine bandwidth from 
the frequency spectrum with parameters such as -3dB cutoff 
points. Associate variations in bandwidth with clinical 
circumstances (e.g., constriction during seizures) 

 
Where fi =  Frequency component; P(fi) = Power at 

frequency; N=Number of frequency bins 

IV. Results 
A. Classification Analysis 

Electroencephalogram (EEG) signals serve as a crucial 

diagnostic instrument in neurology, facilitating the detection 

of anomalies including epileptic seizures, sleep problems, and 

cerebral traumas. Signal classification is a crucial phase in 

EEG data processing, wherein segments of the signal are 

examined for their attributes and juxtaposed with established 

thresholds to assess their condition. Threshold matching 

classification is a simple yet effective technique for evaluating 

the health of EEG signal segments. Threshold matching 

analysis for signal categorisation is a key methodology that  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

harmonises simplicity and effectiveness. Comparing retrieved 

signal properties to predefined criteria enables excellent 

discrimination between healthy and pathological brain 

activity. This methodology is extensively employed in EEG 

analysis for several clinical applications, including seizure 

detection, brain-computer interfaces, and diagnostic tools. 

 

 

 

Parameter Channel 1 Channel 2 Normal Range 

MEAN 0.1866 0.0899 Close to zero (after normalization) 

VARIANCE 

 

1.1517 

 

0.2173 
Indicative of signal variability, with higher values 

potentially linked to abnormal brain activity. 

SKEWNESS 
0.3682 

 
-0.3042 

Healthy signals usually have low skewness, 

indicating symmetry in the signal. 

KURTOSIS 2.5683 2.6222 

Values close to 3 are typical of Gaussian-like 

distributions; deviations may indicate abnormal 

spikes or artifacts 

POWER 1.1815 0.2243 
Elevated power may indicate excessive brain activity, 

often linked to seizures 

ENERGY 237.4874 45.0781 
Elevated energy may indicate excessive brain 

activity, often linked to seizures 

BANDWIDTH 48.3980 HZ 50.9453 Hz 
Higher bandwidths might reflect pathological activity 

or noise. 
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Threshold Matching: 

For the investigation, we selected two EEG channels that are 

filtered and devoid of noise. The signals are divided into 

segments of 10 seconds, ranging from 8000 samples to 9600 

samples. The performance metric features are extracted for 

each filtered and normalised segment, and the threshold 

ranges are created accordingly. Each extracted feature is 

tested against specified threshold ranges that signify normal 

(healthy) or abnormal (unhealthy) situations. The threshold 

values denote the anticipated range for each feature in healthy, 

artifact-free signals. 

● Mean: [-0.5, 0.5] 

● Variance: [0.1, 2.0] 

● Skewness: [-1, 1] 

● Kurtosis: [2.5, 4.5] 

● Bandwidth: is within [1 Hz, 30 Hz] 

 

Table 2: Comparison & Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

The performance metrics of the two channels is given above 

in Table 2 

B. Classification Logic 

Healthy Signal: 

A signal segment is deemed healthy if all extracted features 

conform to the established thresholds. This indicates that the 

section demonstrates typical, consistent brain activity devoid 

of substantial disruptions. If the mean is within the interval [-

0.5, 0.5] and the variance is between 0.1 and 2.0, the signal 

can be deemed normal.  

 

Unhealthy Signal: 

Should any features exceed the threshold range, the section is 

deemed unhealthy. This may signify the existence of atypical 

cerebral activity, including seizures, muscular artefacts, or 

other neurological disorders. If the kurtosis surpasses 4.5 or 

the bandwidth is beyond the 1 Hz to 30 Hz range, the signal 

may be deemed irregular. The classification of EEG signals is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 

 

Channel 1 

 

Channel 2 

 

Analysis 

 

Comparison 

 

 

 

MEAN 

 

 

 

0.0899 

 

 

 

0.1866 

 

Channel 1lightly deviates from 

zero, but within reasonable 

bounds for a normalized EEG. 

The other deviates from zero, 

suggesting potential abnormality 

or artifact 

 

Signal 2 shows a 

greater deviation, 

possibly abnormal 

 

 

 

VARIANCE 

 

 

0.2173 

 

 

 

1.1517 

 

 

Low variance indicates limited 

variability, possibly normal 

activity. The channel 2 high 

variance indicates elevated 

variability, possibly abnormal. 

 

Signal 2 have high 

variability, a potential 

indicator of abnormal 

activity 

 

 

SKEWNESS 

 

 

-0.3042 

 

 

 

0.3682 

 

Mild negative skewness suggests 

slight asymmetry but not 

significant. Mild positive 

skewness; may indicate slight 

asymmetry in the signal. 

Both within typical 

bounds but signal 2 

shows more asymmetry. 

 

KURTOSIS 

 

2.6222 

 

2.5683 

1 is Close to 3 consistent 2 is 

slightly below 3, but not 

significantly abnormal. 

Both close to near three, 

suggesting near GD. 

 

POWER 

 

0.2243 

 

1.1815 

 

Elevated power indicates 

excessive brain activity, often 

linked to seizures or artifacts. 

 

signal2 exhibits 

evaluated power 

potentially linked to 

abnormal activity 

 

 

ENERGY 

 

237.4874 

 

45.0781 

 

Low energy is typical of normal 

EEG segments. 

High energy supports the 

interpretation of elevated activity 

Signal 2 have high 

energy, further 

supporting abnormality. 

 

BW 

 

 50.9453  

 

48.3980 

Bothe are High but still plausible, 

possibly reflecting noise or sharp 

waveforms 

Both high but Signal 2 

aligns with pathological 

characteristics. 

The International journal of analytical and experimental modal analysis

Volume 17, Issue 07, July/2025

ISSN NO: 0886-9367

Page No:469



 

accomplished by feature extraction and a predetermined 

threshold range. 

 

 
Figure8: EEG Abnormality Identification 

 

The analysis in Figure 9 illustrates the anomaly 

between the two channels. The red spots depicted in the graph 

represent anomalous data that surpass the typical range of 

many metrics, including amplitude, power, mean, and energy. 

The red points presumably denote data points identified as 

anomalous according to specific criteria, such as amplitude 

thresholds or deviations from anticipated patterns.  

In channel 2, the red dots exhibit a higher density in regions 

with rapid variations, indicating that these segments of the 

signal may substantially diverge from anticipated patterns. 

This may result from the existence of artefacts, noise, or 

genuine neurological problems. The anomalous pattern in 

channel 2 may result from noise or artefacts disrupting the 

standard EEG rhythm. 

Channel 1 exhibits a more constant and rhythmic 

pattern, while EEG Signal 2 displays more erratic variations. 

The irregularities may indicate an abnormality or interference 

in Signal 2. In a clinical context, these aberrations may signify 

areas of potential seizure activity, artefact interference, or 

other unusual occurrences. 

Channel 1 seems to represent a normal EEG 

segment, while Signal 2 presumably denotes an abnormal 

EEG segment, potentially signifying irregular brain activity 

(e.g., seizure activity, artefact, or sharp waves). We have 

compared the signal segments of the channels based on the 

established threshold of the performance metric. Channel 1 

displayed a singular healthy EEG segment subsequent to the 

comparison. The threshold range has aligned with the 

performance values of the segments between indices 8000 and 

8200. 

 

 
Figure 9: EEG Segments from 8000-8200 

 

For the segment (8000-8200) 

Mean: -0.0795 

Variance: 0.6358 

Skewness: 0.0676 

Kurtosis: 2.5252 

Peak-to-Peak Amplitude: 3.6944 

Power: 0.6389 

Energy: 128.4204 

Bandwidth: 50.9453 Hz 

 

 

Channel 2 exhibited no healthy EEG segments, as all noise-

free segment features failed to align with the established 

threshold range. The performance measure values of channel 

2 significantly surpassed expectations, indicating an anomaly 

in the channel. 
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Figure 10: EEG Segments 

 
 

 
 

Figure 11: EEG Segments (For Reference) 

 

Following the threshold-based categorisation, it is 

determined that channel 2 is partially normal, while signalling 

an unhealthy signal associated with a probability of epilepsy, 

seizures, and other neurological disorders. 

 

 

 

 

V. CONCLUSIONS 

 The examination of EEG signals by feature extraction and 

threshold matching offers a methodical means to evaluate 

cerebral activity and identify irregularities. The approach 

captures basic aspects of the EEG signal by extracting key 

variables like mean, variance, skewness, kurtosis, peak-to-

peak amplitude, power, energy, and bandwidth. This method 

is proficient at spotting anomalies, including seizures or 

artefacts, by recognising deviations from anticipated feature 

ranges. Healthy signals often reside within the defined 

thresholds, indicating consistent and normal cerebral activity. 

Conversely, unhealthy signals display feature levels over 

these thresholds, indicating potential problems that may 

necessitate additional examination.  

 The integration of preprocessing (filtering and 

normalisation), feature extraction, and threshold-based 

classification establishes a resilient framework for EEG 

analysis. It elucidates the interpretation of intricate cerebral 

signals, providing a dependable and effective instrument for 

therapeutic applications such as seizure detection, artefact 

removal, and diagnostic assistance. This approach establishes 

a basis for automated systems, enhancing precision and 

expediting decision-making in neurological evaluations. 
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